Max Webinar

BigDFT

Approach to Large Scale Systems with BigDFT; from Ground State to Electronic Excitations

Laura Ratcliff

Imperial College London

November 12, 2020

Virtual Room

Large Systems

Laura Ratcliff

Large Systems Linear Scaling BigDFT Fragment Approach OLED Application TADF and Excited States

The Cubic Scaling Limit

Large Systems

Laura Ratcliff

Large Systems Linear Scaling BigDFT Fragment Approach OLED Application TADF and Excited States

Size Limitations

- ~ 1000 atoms thanks to wavelet properties and efficient parallelization
- for bigger systems
 O(N³) dominates in time and memory
- \rightarrow need new approach

Nearsightedness

- the behaviour of large systems is short-ranged
- the density matrix, ρ(r, r'), decays exponentially in systems with a gap
- ightarrow can we exploit nearsightedness in large systems?

Large Systems

Laura Ratcliff

Linear Scaling BigDFT Fragment Approach OLED Application TADF and Excited States

Support Functions (SFs)

write KS orbitals as linear combinations of SFs $\phi_{\alpha}(\mathbf{r})$: $\Psi_i(\mathbf{r}) = \sum c_i^{\alpha} \phi_{\alpha}(\mathbf{r})$

- localized ($\sim 6-8 a_0$ radius)
- atom-centred
- minimal 1 SF per H, 4 per C/N/O...
- numerical functions expanded in wavelets
- quasi-orthogonal
- Γ-point only real

Density Kernel (K)

define the density matrix ρ :

$$egin{aligned} & \phi(\mathbf{r},\mathbf{r}') &=& \sum_i f_i \left| \Psi_i(\mathbf{r})
angle \langle \Psi_i(\mathbf{r}')
ight| \ &=& \sum_{lpha,eta} \left| \phi_{lpha}(\mathbf{r})
angle \mathcal{K}^{lphaeta} \langle \phi_{eta}(\mathbf{r}')
ight| \end{aligned}$$

$$\begin{split} & \mathcal{H}_{\alpha\beta} = \langle \phi_{\alpha} | \hat{\mathcal{H}} | \phi_{\beta} \rangle; \qquad \mathcal{S}_{\alpha\beta} = \langle \phi_{\alpha} | \phi_{\beta} \rangle \\ & \mathcal{E} = \mathrm{Tr} \left(\mathbf{K} \mathbf{H} \right); \qquad \mathcal{N} = \mathrm{Tr} \left(\mathbf{K} \mathbf{S} \right) \end{split}$$

The Algorithm

Large Systems

Laura Ratcliff

Large Systems Linear Scaling BigDFT Fragment Approach OLED Application TADF and Excited States

extended Kohn-Sham orbitals cubic scaling, high accuracy

Accurate Minimal Basis

localized support functions (LCAO)

linear scaling, low accuracy

 minimize energy wrt both SFs and kernel (subject to constraints)

localized adaptive support functions linear scaling, high accuracy

optimize

- SFs adapt to the environment minimal, localized basis with wavelet accuracy
- 3 methods for \mathbf{K} Fermi Operator Expansion for $\mathcal{O}(\mathcal{N})$, direct minimization (virtual states), diagonalization
- forces geometry optimizations, MD

From Sparsity to Linear Scaling

Large Systems

Laura Ratcliff

Linear Scaling BigDFT Fragment Approach OLED Application TADF and Excited States

Sparse Matrices

- strict localization leads to sparse matrices (K truncation)
- crossover depends on size, dimensionality, SF radii...
- speed also depends on band gap (can treat metals)

LS-BigDFT: Mohr et al., J. Chem. Phys. 140, 204110 (2014); Mohr et al., Phys. Chem. Chem. Phys. 17, 31360 (2015) Metals: Mohr et al., J. Nucl. Mater. Energy 15, 64 (2018)

Exploiting Similarity Between Fragments

Large Systems

Laura Ratcliff

Large Systems Linear Scaling BigDFT Fragment Approach OLED Application TADF and Excited States

Calculation Bottleneck

- SF optimization dominates prefactor
- similar chemical environments \rightarrow similar SFs
- can we reuse SFs?

Acccounting for Varying Orientations and Positions

minimize cost function to find rotation from template:

$$J(\mathcal{R}) = \frac{1}{N} \sum_{a=1}^{N} ||\mathbf{R}_a^S - \sum_{b=1}^{N} \mathcal{R}_{ab} \mathbf{R}_a^T||^2$$

apply accurate and efficient wavelet interpolation scheme

Molecular Fragment Approach

.<u>↓</u>Big DFT●

Large Systems

Laura Ratcliff

Large Systems Linear Scaling BigDFT Fragment Approach OLED Application TADF and Excited States

Calculation Steps

- template calculation: optimize SFs for isolated fragment
- reformatting: replicate and rototranslate template SFs for each fragment instance
- full calculation: use fragment SFs as a fixed basis, optimizing density kernel only

Applicability of the Fragment Approach I

Large Systems

Laura Ratcliff

Large Systems Linear Scaling BigDFT Fragment Approach OLED Application TADF and Excited States

Effect of Fragment Interactions - Water Dimer

- basis set superposition error at small distances
- increase basis to improve accuracy
- applicability depends on quantity of interest
- ightarrow suited to weakly interacting fragments

Ratcliff, Genovese, Mohr and Deutsch, J. Chem. Phys. 142, 234105 (2015)

Applicability of the Fragment Approach II

Large Systems

Laura Ratcliff

Large Systems Linear Scaling BigDFT Fragment Approach OLED Application TADF and Excited States

Effect of Distortions - 2CzPN

- use optimized molecule as template
- more distorted fragments ightarrow larger error
- cost function J used to predict accuracy
- ightarrow suited to fragments which are not too distorted

ロトス団トスヨトスヨト ヨーのへで

Applicability of the Fragment Approach III

Large Systems

Laura Ratcliff

Linear Scaling BigDFT Fragment Approach OLED Application TADF and Excited States

Cluster of Rigid CBP Molecules

- $E_{\rm frag} E_{\rm cubic} \simeq 30 \text{ meV/atom}$
- fragment approach reproduces (occupied) DoS
- ~5000 atom single point calculation (48 nodes on Archer) fragment approach ~ 7× cheaper than full linear scaling

Fragment Approach: Beyond Molecules

Large Systems

Laura Ratcliff

Linear Scaling BigDFT Fragment Approach OLED Application TADF and Excited States

Finite SiC Nanotube

- use J and onsite overlap matrix to inform setup
- optimize SFs in embedded pseudo-fragments
- also applied to defective graphene

Ratcliff and Genovese, J. Phys.: Condens. Matter **31**, 285901 (2019) Ratcliff and Genovese, In: E. Levchenko, Y. Dappe, G. Ori. (Eds), Springer Series in Materials Science, vol. 296 (2020)

OLED Simulation Challenge

Large Systems

Laura Ratcliff

Large Systems Linear Scaling BigDFT Fragment Approach OLED Application

TADF and Excited States

Simulating Charge Transport

need to calculate parameters like transfer integrals in a disordered host-guest material

Typical Procedure

extract pairs of molecules from morphology and calculate transfer integrals for each pair

Environmental Effects

BUT the environment can affect parameters – need large systems

Host-Guest OLED

Host-Guest OLED Morphology

- CBP doped with Ir(ppy)₃ (~ 6200 atoms)
- Metropolis Monte Carlo with simulated annealing of rigid molecules (mimic physical vapor deposition)
- use constrained DFT to introduce net confined charge → polarization effects for on-site energies

Large Systems

Laura Ratcliff

Large Systems Linear Scaling BigDFT Fragment Approach OLED Application

OLED Charge Transport Parameters

Large Systems

Laura Ratcliff

Large Systems Linear Scaling BigDFT Fragment Approach OLED Application TADF and Excited States

Environmental and Statistical Effects

- disorder \rightarrow dispersion in $E_{\text{on-site}}$ and j_{ij}
- environment \rightarrow shift in $E_{\text{on-site}}$ (- -) cf. isolated molecule (—)

Ratcliff et al., J. Chem. Theory Comput. 11, 2077 (2015)

Towards More Sustainable OLEDs

Ground State of 2CzPN

- current OLEDs rely on Ir, $Pt \rightarrow unsustainable$
- thermally activated delayed fluorescence efficient and purely organic, e.g. 2CzPN
- 50 molecule cluster extracted from MD run

Laura Ratcliff

Large Systems Linear Scaling BigDFT Fragment Approach OLED Application

MD snapshot: Olivier et al., Phys. Rev. Mater. 1, 075602 (2017)

ロト (日) (日) (日) (日) (日) (日) (日)

TADF and Excited States I

Large Systems

Laura Ratcliff

Large Systems Linear Scaling BigDFT Fragment Approach OLED Application

Beyond the Ground State

- need small $\Delta E_{
 m ST}$
- mix of charge transfer and local excitations

CDFT and CT Excitations

- TDDFT expensive, issues with long range CT
- CDFT cheap, can treat long range CT excitations

Large Systems

Laura Ratcliff

Large Systems Linear Scaling BigDFT Fragment Approach OLED Application

Charge Transfer vs. Localized Excitations

- CT states can use (fragment based) spatial constraint
- LE states impose a constraint between orbitals

CT – Spatial Constraint

LE – Orbital Constraint

ロトス団とスティート、ヨーシック

Gas Phase CDFT Benchmarks: 2CzPN

Large Systems

Laura Ratcliff

Large Systems Linear Scaling BigDFT Fragment Approach OLED Application

Vertical Excitations

- assume pure transition (HOMO
 →LUMO only)
- use cubic scaling wvfns as basis
- compare excited state approaches with CDFT/PBE
- reference TDA with tuned range separated functional

Stella, Thapa, Genovese and Ratcliff, in preparation (2020)

(日)・個)・(日)・(日)・(日)

From Cubic Scaling to Multiscale

.<u>↓</u>Big DFT•

Large Systems

Laura Ratcliff

Large Systems Linear Scaling BigDFT Fragment Approach OLED Application

Across Lengthscales

- extended orbitals $ightarrow oldsymbol{O}ig(N^3ig)$
- exploit locality → O(N)
- exploit repetition $\rightarrow \downarrow \text{cost } O(N)$
- larger systems \rightarrow increasing complexity
- → how to treat complex systems?

(ロト・日本・日本・日本・日本・日本)