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Basis sets for DFT calculations

Plane Waves

ABINIT, CPMD, VASP, . . .
Systematic convergence

4 Accuracy increases
with the number of
basis elements

4 Non-localised,
optimal for periodic
systems

8 Non adaptive

Gaussians, Slater Orbitals

CP2K,Gaussian,AIMPRO, . . .
Real space localized

4 Small number of basis
functions for moderate
accuracy

4 Well suited for
molecules and other
open structures

8 Non systematic

FFT

Robust, easy to
parallelise

Analytic functions

Kinetic and overlap matrices are
calculated analytically
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Origin of the BigDFT project

STREP European project: BigDFT(2005-2008)

In the beginning: Four partners, 15 people
Now: around 10 active developers, Grenoble, Basel, Barcelona,
London, Uppsala, Kobe
Used in production since twelve years.

Aim: To develop an ab-initio DFT code based
on Daubechies Wavelets, to be integrated in
ABINIT. BigDFT 1.0 −→ January 2008

Why have we done this?

• Test the potential advantages of a new formalism

* A lot of outcomes and interesting results

• Future opportunities and ideas
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A DFT code based on Daubechies wavelets

Wavelets

A basis with optimal properties for expanding
localised information

• Localised in real space

• Smooth (localised in Fourier space)

• Orthogonal basis

• Multi-resolution basis

• Adaptive

• Systematic

From early 80’s

Applied in several domains
Interesting properties for DFT

Daubechies Wavelets
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A brief description of wavelet theory

A Multi-Resolution real space basis

All functions w/ compact support, centered on grid points. In the
wavelet theory we have two kind of basis functions.

Scaling Functions (SF)

The functions of low resolution
level are a linear combination
of high-resolution functions.

= +

Wavelets (W)

Contain the DoF needed to
complete the information lacking
due to the coarseness of the
resolution.

= 1
2 + 1

2

Increase the resolution without modifying grid space

SF + W = Degrees of Freedom of SF of higher resolution
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Wavelet properties: adaptivity

Adaptivity

Resolution can be refined following the grid point.

The grid is divided in
Low (1 DoF) and High (8
DoF) resolution points.
Points of different
resolution belong to the
same grid.
Empty regions must not be
“filled” with basis functions.

Localization property,real space description

Optimal for big & inhomogeneous systems, highly flexible
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Basis set features

Tensor product decomposition of the basis

The 3D basis is separable in 1D SF/ W.

φ
ex ,ey ,ez
jx ,jy ,jz (x ,y ,z) = φ

ex
jx (x)φ

ey
jy (y)φ

ez
jz (z)

(jx , jy , jz) are the grid points, φ
(0)
j and φ

(1)
j the SF and the W.

Orthogonality, scaling relation

Daubechies wavelets are orthogonal and multi-resolution∫
dxφk (x)φ`(x) = δk` φ(x) =

1√
2

m

∑
j=−m

hjφ(2x− j)

Hamiltonian-related quantities are calculated analytically

The accuracy is only limited by the basis set (O(h14
grid)))
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Operator expressions, pseudopotentials

Exact evaluation of kinetic energy

Expressed analytically by a convolution:

f (x) = ∑
`

c`φ`(x) , ∇
2f (x) = ∑

`

c̃` φ`(x) ,

c̃` = ∑
j

cj a`−j , a` ≡
∫

φ0(x)∂
2
xφ`(x) ,

From N3 to 3N calculations for separable objects

We save computational time when performing scalar products
with separable functions (e.g. gaussians).∫

drψ(r)e−
1
2 ( r

ra )
2

= ∑
ijk

cijk didjdk , di =
∫

φi(x)e−
1
2 ( x

ra )
2

di coefficients can be calculated at machine precision.

GTH-HGH: analytic and separable pseudopotentials
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Systematic basis set

The absolute accuracy of the calculation is directly proportional
to the number of the basis functions

Two parameters for tuning the basis

• The grid spacing hgrid

• The extension of the Low resolution points crmult
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Optimal for inhomogeneous systems

Test case: cinchonidine molecule (44 atoms)
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Number of degrees of freedom

Ec = 125 Ha

Ec = 90 Ha

Ec = 40 Ha

h = 0.3bohr

h = 0.4bohr

Plane waves

Wavelets

Enables a systematic approach for molecules

Considerably faster than Plane Waves codes.
the above run :10 (5) times faster than ABINIT (CPMD)
Charged systems can be treated explicitly with the same time
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All-electron precision with HGH PSP

Non-linear core correction J. Chem. Phys. 138, 104109 (2013)

• Simple analytic form (a single gaussian as ρc)

• Same hardness as HGH
* a systematic localized basis is fundamental

Precision considerably improved G2-1 test set (Atomization energies)

kcal/mol MAD RMSD MSD maxAD minAD

Old HGH 6.85 9.13 -6.76 23.94 0.10
NLCC-HGH 0.51 0.63 0.16 1.50 0.03
PAW Paier 0.46 0.56 -0.43 1.13 0.01

∆ AE (geopt) 0.29 0.70 -0.29 4.21 0.00

AE precision for quantities in different environments

Bond lengths, Pressure (Bulk systems), Dispersion-corrected
interaction energies, . . .
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Local orbitals and linear scaling

KS orbitals

Linear combinations of support
functions φα(r):

Ψi(r) = ∑
α

cα
i φα(r)

• localized around atoms

• expanded in wavelets

• optimized in-situ

Density Matrix

Defined via the kernel K αβ in
the φα(r) basis:

ρ(r, r′) = ∑
i

fiΨi(r)Ψi(r′)

= ∑
α,β

φα(r)K αβ
φβ(r′)

Localization→ sparse matrices→ O (N)
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Overall scheme

Initial Guess: 
Atomic Orbitals

Basis optimization:

Kernel Optimization:

Update potential
Diagonalize Hamiltonian

Forces:
Derivative basis functions

or

Two-step optimization
scheme

• The φα minimize the
“trace” of a confining KS
hamiltionian

• Coefficients minimize KS
energy

High quality results

• Good precision

• No need of Pulay forces
due to basis completeness!
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A flexible formalism

Flexible Boundary Conditions

• Isolated (free) BC

• Surfaces BC

• Periodic (3D) BC

• Wires BC

Systematic approach

Only relevant degrees of freedom are taken into account
Boundary conditions can be implemented explicitly
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E.g.: Surfaces BC

2D Periodic + 1D isolated
Optimal to treat dipolar systems
without corrections
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