

In real time: nonlinear optical spectroscopy

Myrta Grüning - Queen's University Belfast

MaX "Materials Design at the Ex 2018-1, grant agreement 82414

MaX "Materials Design at the Exascale", has received funding from the European Union's Houzon 202

020 project call H2020-INFRAEDI

ab initio...

et al.

...towards larger systems

2019

ab initio...

et al.

...towards other spectroscopies

Linear response Nonlinear regime

...towards other spectroscopies

an uncharted territory

the dragons

pump-probe

PNAS 102 (25) 8854-8859;

Nature Physics 15, 10-16(2019)

extreme nonlinear

Linear response Nonlinea regime Out-of-equilibrium regime

the dragons

the dragons

extreme nonlinear

a paradigm shift

real-time

the GW+BSE recipe for success

within GWA

C. Attaccalite, M. Grüning, and A. Marini (2011) Phys. Rev. B 84, 245110

the GW+BSE recipe for success in real-time

C. Attaccalite, M. Grüning, and A. Marini (2011) Phys. Rev. B 84, 245110

yambo real-time implementation

$$i\hbar\frac{\partial}{\partial t}G_{nm\mathbf{k}}^{<}(t) = \left[\mathbf{h}_{\mathbf{k}} + \Delta\mathbf{h}_{\mathbf{k}} + \mathbf{U}_{\mathbf{k}} + \Delta\mathbf{V}_{\mathbf{k}}^{H}[\rho] + \Delta\boldsymbol{\Sigma}_{\mathbf{k}}^{\mathrm{cohsex}}[G^{<}], \mathbf{G}_{\mathbf{k}}^{<}(t)\right]_{nm}$$

C. Attaccalite, M. Grüning, and A. Marini (2011) Phys. Rev. B 84, 245110

bulk polarization

see e.g. Resta, Troisieme Cycle de la Physique en Suisse Romande (1999), "Berry's Phase and Geometric Quantum Distance"

bulk polarization

see e.g. Resta, Troisieme Cycle de la Physique en Suisse Romande (1999), "Berry's Phase and Geometric Quantum Distance"

dynamics of Bloch electrons for coherent response

$$i\hbar \frac{a}{dt} |v_{\mathbf{k},m}\rangle = \left(\mathbf{h}_{\mathbf{k}} + \Delta \mathbf{h}_{\mathbf{k}} + \Delta \mathbf{V}_{\mathbf{k}}^{H}[\rho] + \Delta \boldsymbol{\Sigma}_{\mathbf{k}}^{\text{cohsex}}[G^{<}] + w_{\mathbf{k}}(\boldsymbol{\mathcal{E}})\right) |v_{\mathbf{k},m}\rangle$$

w: covariant dipole operator, consistent with def of P(t)

$$G^{<}(\mathbf{r},\mathbf{r}';t) = i \int d\mathbf{k} \sum_{m}^{\text{fill}} e^{i\mathbf{k}(\mathbf{r}-\mathbf{r}')} v_{\mathbf{k},m}(\mathbf{r};t) v_{\mathbf{k},m}^{*}(\mathbf{r}';t)$$

Souza el al PRB 69, 085106 (2004), C. Attaccalite, MG PRB 88, 235113 (2013)

real-time and nonlinear runlevels

$$yambo_{\mathbf{r}} \mathbf{t} \quad i\hbar \frac{\partial}{\partial t} G_{nm\mathbf{k}}^{<}(t) = \left[\mathbf{h}_{\mathbf{k}} + \Delta \mathbf{h}_{\mathbf{k}} + \mathbf{U}_{\mathbf{k}} + \Delta \mathbf{V}_{\mathbf{k}}^{H}[\rho] + \Delta \boldsymbol{\Sigma}_{\mathbf{k}}^{\mathrm{cohsex}}[G^{<}], \mathbf{G}_{\mathbf{k}}^{<}(t)\right]_{nm}$$
$$yambo_{\mathbf{n}} \mathbf{l} \quad i\hbar \frac{d}{dt} |v_{\mathbf{k},m}\rangle = \left(\mathbf{h}_{\mathbf{k}} + \Delta \mathbf{h}_{\mathbf{k}} + w_{\mathbf{k}}(\boldsymbol{\mathcal{E}}) + \Delta \mathbf{V}_{\mathbf{k}}^{H}[\rho] + \Delta \boldsymbol{\Sigma}_{\mathbf{k}}^{\mathrm{cohsex}}[G^{<}]\right) |v_{\mathbf{k},m}\rangle$$

Sangalli et al. Journal of Physics: Condensed Matter, 31, 325902 (2019)

how it works? Choice of experiment

example: linear response

C. Attaccalite, M.G, A Marini PRB 84, 245110 (2011)

example: nth harmonic generation

example: nth harmonic generation

P(t) $P(t_j) = \sum_{n=-N}^{N} F_{jn} \hat{P}_n$ $\sum_{\exp(i \, n \omega_L t_j)}^{N}$ \/\/\/\ 2N $\hat{P}_n = \sum_{n=1}^{2n} F_{nj}^{-1} P(t_j)$ $\mathcal{E}(t) = \mathcal{E}_0 sin(\omega_L t)$ $i\hbar \frac{d}{dt} |v_{\mathbf{k},m}\rangle = (\mathbf{h}_{\mathbf{k}} + \mathbf{w}_{\mathbf{k}}(\boldsymbol{\mathcal{E}})) |v_{\mathbf{k},m}\rangle$ $\chi^{(n)}(n\omega_L) = \frac{\dot{P}_n}{\mathcal{E}^n}$

example: two-photon absorption

example: two-photon absorption

 $\mathcal{E}(t) = \mathcal{E}_0 sin(\omega_L t)$

@varying
field intensity

how it works? Choice of level of theory

P(t) $\langle / \rangle / \langle / \rangle$ $\mathcal{E}(t) = \mathcal{E}_0 sin(\omega_L t)$ $i\hbar \frac{d}{dt} |v_{\mathbf{k},m}\rangle = (\mathbf{h}_{\mathbf{k}} + \mathbf{w}_{\mathbf{k}}(\boldsymbol{\mathcal{E}})) |v_{\mathbf{k},m}\rangle$

SHG in 2D materials

Phys. Rev. Mat. 3, 074003 (2019)

SHG in 2D materials

THG in 1D nanostructures

E 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Laser frequency (eV) Phys. Rev. B 95, 125403 (2017)

SHG in 2D materials

THG in 1D nanostructures

2-photon absorption in hBN bulk and ML

Phys. Rev. B 98, 1651126 (2018)

SHG in 2D materials

THG in 1D nanostructures

2-photon absorption in hBN bulk and ML

Phys. Rev. B 98, 1651126 (2018)

example: SHG in h-BN monolayer

example: SHG in h-BN monolayer

C. Attaccalite, M. G. Phys. Rev. B 88, 235113 (2013) M. G and C. Attaccalite, Phys. Rev. B 89(R), 081102 (2014)

example: SHG in h-BN monolayer

C. Attaccalite, M. G. Phys. Rev. B 88, 235113 (2013) M. G and C. Attaccalite, Phys. Rev. B 89(R), 081102 (2014)

example: SHG in bulk semiconductors

 $H^0 + \Delta V^H[\rho] + \Delta V^{\rm xc}[\rho]$

MG, D. Sangalli, C. Attaccalite PRB 94, 035149 (2016))

example: SHG in bulk semiconductors

$$H^0 + \Delta V^H[\rho] + \Delta V^{\rm xc}[\rho]$$

EXPERIMENT 5 0.5 10 15 2.0 2.5 LASER FREQUENCY (EV)

WITH MACROSCOPIC XC

$$H^0 + \Delta^{\mathrm{scissor}} + \Delta V^H[\rho] + \alpha^{\mathrm{xc}}P$$

MG, D. Sangalli, C. Attaccalite PRB 94, 035149 (2016))

Follow us on:

@max_center2

