
Daniel Ruiz
April 18th, 2019

Enabling SVE evaluation with
Arm Instruction Emulator

2 © 2019 Arm Limited

Enabling SVE evaluation with ArmIE

• HPCG introduction
• Optimizations

• Tools
• DynamoRIO + ArmIE + scripts

• Analysis
• Metrics of interest

– Instruction count
– Memory metrics
– Memory system impact
– Optimization advice

3 © 2019 Arm Limited

HPCG

• Benchmark for ranking Top500 HPC systems

• HPCG’s kernels are representative of real-world
scientific applications ran on HPC machines,
computationally and data access pattern-wise
• E.g., Computational fluid dynamics (OpenFOAM),

computational photography

• Is not only about the FLOPS!
• Don’t worry, still used as Figure of Merit J
• Along with the memory bandwidth

• Motivates improvements in our Arm Performance
Libraries

*Not machine learning

4 © 2019 Arm Limited

HPCG

• Solves the linear system
𝐴 ∗ 𝑥 = 𝑟

Not parallelizable!
How can we do better?

5 © 2019 Arm Limited

Optimizations…

• Nodes in the same level of the graph can be processed in parallel.
• How to:

1. Add node 0 to the level 1
2. Mark node 1 as visited
3. Close level 1
4. Check neighbors of nodes in previous level to see if dependencies are fulfilled

1. If yes, add node to the level and mark node as visited
2. If no, continue with the next node

5. Close level, add new level and go to 4 if no more nodes to process
6. Reorder nodes by level

Level 0: 0
Level 1: 1
Level 2: 2, 4
Level 3: 3, 5
Level 4: 6, 8
Level 5: 7, 9
Level 7: 10, 12
Level 8: 11, 13
Level 9: 14
Level 10: 15

Multi-level task dependency graph

6 © 2019 Arm Limited

More optimizations…

• Blocks with the same color can be processed in parallel.
• How to:

1. Group N consecutive nodes in blocks
2. Colorize blocks
3. Reorder blocks

Block multi-coloring

7 © 2019 Arm Limited

All the (parallelism) optimizations!

Coarser levels
(block multi-coloring)

Finest level
(multi-level task
dependency graph)

Further information about our code in the Arm blog:
https://community.arm.com/developer/tools-

software/hpc/b/hpc-blog/posts/parallelizing-hpcg

Merging all together

https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/parallelizing-hpcg

8 © 2019 Arm Limited

Putting the optimizations to the test

• Parallelizing the main kernels
improves application scalability.

• Higher gap in performance
expected at higher core count.

• Results presented at SC18
• Positive feedback from the community.

Optimized NEON:
• 8 MPI ranks per node
• 7 OpenMP threads per MPI rank

Baseline (MPI-only):
• 56 MPI ranks per node

0

50

100

150

200

250

1 2 3 4 5 6 7

Pe
rf

or
m

an
ce

 [G
FL

O
PS

]

Nodes

baseline Optimized NEON

Tools

DynamoRIO & ArmIE

10 © 2019 Arm Limited

DynamoRIO & ArmIE

DynamoRIO

Armv8-A + SVE Binary

Arm Instruction Emulator
(ArmIE)

[Emulation Client]

Emulation API

SVE Memtrace Client

SVE Inscount Client

SVE custom clients

SVE Opcodes Client

11 © 2019 Arm Limited

Why ArmIE?

Because ArmIE is:

ü Fast functional emulator
(enables apps with large inputs runs)

ü Easy to use and develop
(allows custom instrumentation and post-processing)

ü Freely available

ü Partly open-source(API to build your
own instrumentation)

ArmIE is not:

✗ Cycle accurate
(no timing information)

✗ A simulator
(Requires Armv8 hardware)

✗ Architecture modelling
(Is all about the apps)

12 © 2019 Arm Limited

ArmIE under the covers

• Compile application with SVE-capable compiler and run it through ArmIE:
• $ armie -msve-vector-bits=512 -i libinscount_emulated.so -- ./sve_app

• Use Region-of-Interest (RoI) markers in the code to delimit instrumentation
• Not all clients

• Three SVE-ready instrumentation clients come pre-packaged in latest ArmIE version:

More info in the Arm blog:
https://community.arm.com/developer/tools-software/hpc/b/hpc-

blog/posts/emulating-sve-on-armv8-using-dynamorio-and-armie

SVE Inscount SVE Opcodes SVE Memtrace

https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/emulating-sve-on-armv8-using-dynamorio-and-armie

Metrics of interest

14 © 2019 Arm Limited

What we ran

2 HPCG versions:
• Baseline

• What everyone gets to try out

• Optimized
• Multi-Level Task dependency and Block coloring optimizations
• Other minor performance improvements (loop fusion/unroll, memory allocations, etc.)

• All versions are compiled with the Arm HPC Compiler 19.0.

15 © 2019 Arm Limited

Instruction client
• Counts dynamically executed instructions

• Total instructions
• SVE instructions

• The metric can be used to know how well the compiler was able to vectorize
• Also to compute the reduction in terms of instructions

• Full inscount of SVE application (512-bit vectors):
$ armie -msve-vector-bits=512 -i libinscount_emulated.so -- ./sve_example
83971 instructions executed of which 22 were SVE instructions

16 © 2019 Arm Limited

0

20

40

60

80

100

120

140

128 256 512 1024 2048

%
 D

yn
am

ic
 to

ta
l i

ns
tr

uc
tio

ns

Vector Length (bits)

%SVE/%non-SVE instructions, relative to 128b

optimized %non-sve

optimized %sve

baseline %non-sve

baseline %sve

Counting instructions

• Instruction count client

17 © 2019 Arm Limited

Compiler auto-vectorization analysis

for (int j = 0; j < nnzInChunk; j++) {
sum0 -= mtxVal[i+0][j] * xv[mtxInd[i+0][j]];
sum1 -= mtxVal[i+1][j] * xv[mtxInd[i+1][j]];
sum2 -= mtxVal[i+2][j] * xv[mtxInd[i+2][j]];
sum3 -= mtxVal[i+3][j] * xv[mtxInd[i+3][j]];

}

for (int j = nnzInChunk-1; j >= 0; j--) {
sum3 -= mtxVal[i-3][j] * xv[mtxIndL[i-3][j]];
sum2 -= mtxVal[i-2][j] * xv[mtxIndL[i-2][j]];
sum1 -= mtxVal[i-1][j] * xv[mtxIndL[i-1][j]];
sum0 -= mtxVal[i-0][j] * xv[mtxIndL[i-0][j]];

}

• GCC and Arm HPC Compiler:
• Reverse loops are not vectorized.

• Intel Compiler:
• Considers outer loops, ends up vectorizing inner loops.

Compiler
Vectorized loops

baseline optimized

SVE
GCC 8.2.0 8/8 12/17

Arm HPC Compiler 19.0 8/8 12/17

AVX2 Intel Compiler 19.0.3 8/8 17/17

18 © 2019 Arm Limited

Memory trace client
• Based on the existing DR memtrace_simple client

• AArch64 tracing done by DR
• SVE tracing is done separately by ArmIE

Trace inside a Region-of-interest (RoI) through markers in the code
#define __START_TRACE() { asm volatile (".inst 0x2520e020"); }
#define __STOP_TRACE() { asm volatile (".inst 0x2520e040"); }

• Two trace files are generated (AArch64 and SVE trace files)
• A shared synchronised counter is used to number ArmIE and DR traces in order to record the correct

temporal sequence between the two traces
• Merging both traces (post-process) results in the complete trace inside the RoI

19 © 2019 Arm Limited

SVE Memory Tracing Client

• Memtrace format:

• ArmIE command example (512-bit vector):
$ armie -e libmemtrace_sve_512.so -i libmemtrace_emulated.so -- ./sve_example

• AArch64 output => memtrace.sve_example.26213.0000.log

• SVE output => sve-memtrace.sve_example.26213.0000.log

sequence number Thread ID SVE Bundle isWrite Data size Data address PC
Shared counter that

ensures correct trace
order

Identifies a contiguous access
or a gather/scatter bundle
(and the element position)

Write/read
operation

20 © 2019 Arm Limited

Merging Traces

• AArch64 and SVE memory traces facilitate merging and analysis
• Counter parameter for merging

• RoI markers are included in the SVE trace to prune unwanted traces (same format as the trace)

• ThreadID field is -1 for the RoI start

• ThreadID field is -2 for the RoI stop

• A different separator after the counter identifies the origin of the trace
• Colon (:) symbol for AArch64 traces

• Comma (,) symbol for SVE traces

14: 0, 0, 0, 8, 0x41fde8, 0x4005fc

20, 0, 0, 0, 64, 0x4200d4, 0x40058c

19, -1, 0, 1, 0, (nil), (nil)

71, -2, 0, 1, 0, (nil), (nil)

21 © 2019 Arm Limited

Parsing Traces

--- L 1.#1 (64B) [0x4200d4] @ 0x40058c – vec_util = 100%
--- L 2.#1 (64B) [0x42002c] @ 0x400590 – vec_util = 100%
=== L 3.#1 Bundle #0 started (4B) [0x42002c] @ 0x400594
=== L 3.#16 Bundle #0 ended [0x42002c] -> 16 accesses (64B) – vec_util = 100%
^ The bundle only has contiguous accesses
^ Bundle stride = 4B
^ The following addresses were accessed repeatedly in the bundle:
> 0x42002c, x16

--- S 1.#1 (64B) [0x42017c] @ 0x40059c – vec_util = 100%

Type Label
Occurrence count

Load/Store
Address PCSize

Bundle info

• The merged traces can be parsed to better understand the memory accesses
• Higher verbosity / better readability or by extracting metrics

22 © 2019 Arm Limited

Studying SVE memory accesses

• Vector utilization [extracted from memory traces]

Version Avg. Vector
utilization

baseline 82.35%

optimized 82.39%

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0% - 33% 34% - 99% 100%

%
 o

f a
cc

es
se

s

% of vector utilized

% Vector utilization @512b VL

baseline optimized

23 © 2019 Arm Limited

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

SVE
Contiguous

All lanes enabled

SVE
Contiguous

w/ lanes disabled

SVE
Gather/Scatter

All lanes enabled

SVE
Gather/Scatter

w/ lanes disabled

non-SVE

%
 a

cc
es

se
s

Memory instructions breakdown @ 512b VL

baseline optimized

Looking at the memory accesses

• Memory accesses present similar
characteristics

• Further work could be done to
decrease the usage of
gathers/scatters

~60% SVE

24 © 2019 Arm Limited

Insights
• Poor vector utilization

• Short loops?
• Conditional statements?

• Too many gather/scatters
• Contiguous loads/stores are preferred
• Can data be reorganized?

• Low percentage of SVE memory accesses
• How good was vectorization?

• Compare against non-SVE executions
• i.e., NEON

25 © 2019 Arm Limited

SVE Cache Simulator
• A simple modular cache simulator for SVE memory traces

• Supports a single-core multi-level cache system
• ArmIE SVE tracing has compatibility issues with multithreaded applications

• Supports prefetcher plugins
• A simple stride prefetcher is currently available

26 © 2019 Arm Limited

Looking at cache

Cache simulator parameters
L1 L2 L3

Cache Size (KB) 64 1024 2048
Line Size (#words) 16 16 16
Word Size (Bytes) 4 4 4
Set Size (n-ways) 8 8 32
Latency (cycles) 4 11 60
Memory Latency (cycles) 156

Stride prefetcher to L1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L1 hit ratio L2 hit ratio L3 hit ratio

%
 H

its

Data cache hit ratios (512b VL)

baseline optimized

0

5

10

15

20

25

30

35

Cycles/access

Cy
cl

es

Avg # cycles per memory access (512b VL)

baseline optimized

27 © 2019 Arm Limited

ArmIE methodology
Overview

Compiler auto-
vectorization

analysis

Dynamic
instruction count &

%SVE utilization
(obtained from ArmIE)

Vector utilization &
types of SVE

memory accesses
(derived from ArmIE)

Cache simulator
Statistics

(enabled by ArmIE and
post-processing)

Optimized

HPCG

HPCG

The metrics you can get:

• Dynamic instruction count
• %SVE utilization
• %SVE contiguous memory

accesses or gather/scatter
• L1$ hit rate
• Variations avg. #cycles per

memory access

28 © 2019 Arm Limited

ArmIE Roadmap

• ArmIE 19.0 is to be released in the next few days
• Mostly bug fixes

• Improved clients and a new instruction trace client planned for 19.1
• With improvements to region-of-interest and client options

• Planning for future versions:
• Better multi-thread support

• Emulation API updates

• Debug functionality

29 © 2019 Arm Limited

Final remarks
• ArmIE enables SVE evaluation with more realistic input sizes

• Emulation overhead depends on the number of SVE instructions
• Non-SVE instructions have near-zero overhead
• SVE Application test and validation is now possible without simulators.

• Evaluation depends on time-agnostic metrics
• Instruction counts, memory traces, etc.
• Need to look at all the metrics, they have little value by their own
• Possibility to create custom clients using the emulation API
• Post-processing can extract fine-grain metrics

• ArmIE does not replace simulators
• All tools have its purpose

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش
הדות

© 2019 Arm Limited

