
Introduction to Arm SVE
and Gem5 simulator

Javier Setoain
Arm Research

Software and Large Scale Systems Group

2 Confidential © 2019 Arm Limited

Outline

About Arm SVE

• Introduction
• Basic SVE architecture
• Vector Length Agnostic Vectorization

About gem5

• Introduction
• Simulation models
• Operating System modes
• Using gem5
• Opportunities and limitations of simulator

3 Confidential © 2019 Arm Limited

Introduction
Basic vectorization

void example01(int *restrict a, const int *b,
const int *c, long N)

{
long i;
for (i = 0; i < N; ++i)

a[i] = b[i] + c[i];
}

4 Confidential © 2019 Arm Limited

Introduction
Basic vectorization

void example01(int *restrict a, const int *b,
const int *c, long N)

{
long i;
for (i = 0; i < N; i+=4) {

a[i] = b[i] + c[i];
a[i+1] = b[i+1] + c[i+1];
a[i+2] = b[i+2] + c[i+2];
a[i+3] = b[i+3] + c[i+3];

}
}

5 Confidential © 2019 Arm Limited

Introduction
Basic vectorization

void example01(int *restrict a, const int *b,
const int *c, long N)

{
long i;
for (i = 0; i < N - 3; i+=4) {

a[i] = b[i] + c[i];
a[i+1] = b[i+1] + c[i+1];
a[i+2] = b[i+2] + c[i+2];
a[i+3] = b[i+3] + c[i+3];

}
// loop tail
for (; i < N; ++i)

a[i] = b[i] + c[i];
}

6 Confidential © 2019 Arm Limited

Introduction
Basic vectorization

void example01_neon(int *restrict a, const
int *b, const int *c, long N)

{
long i;
for (i = 0; i < N - 3; i += 4) {

int32x4_t vb = vld1q_s32(b + i);
int32x4_t vc = vld1q_s32(c + i);
int32x4_t va = vaddq_s32(vb, vc);
vst1q_s32(a + i, va);

}
// loop tail
for (; i < N; ++i)

a[i] = b[i] + c[i];
}

7 Confidential © 2019 Arm Limited

Introduction
Basic vectorization # x0 is 'a', x1 is 'b', x2 is 'c', x3 is 'N’, x8 is the loop induction variable 'i’

mov x8, xzr
subs x9, x3, 3 # x9 = N -3
b.ls .loop_tail_preheader # jump to loop tail if N <= 3

.vector_body:
ldr q0, [x1, x8, lsl 4] # load 4 elements from 'b+i'
ldr q1, [x2, x8, lsl 4] # load 4 elements from 'c+i'
add v0.4s, v1.4s, v0.4s # add the vector
str q0, [x0, x8, lsl 4] # store 4 elements in 'a+i'
add x8, x8, 4 # increment 'i' by 4
cmp x8, x9 # compare i with N - 3
b.lo .vector_body # keep looping if i < N-3

.loop_tail_preheader:
cmp x8, x3 # compare the loop counter with N
b.hs .function_exit # if greater or equal N, terminate

.loop_tail:
ldr w12, [x1, x8, lsl 2]
ldr w13, [x2, x8, lsl 2]
add w12, w13, w12
str w12, [x0, x8, lsl 2]
cmp x8, x3
b.lo .loop_tail # keep looping until no elements remain

.function_exit:
ret

8 Confidential © 2019 Arm Limited

Introduction

NEON

• NEON works with 128-bit vectors

• Way too small for today’s HPC standards

• It doesn’t support conditional execution

• Limited vectorization possibilities

• It can operate only on contiguous memory positions

• Should we create NEON+?

• And when that’s not enough, NEON++?

• And then NEON+++?

• …

9 Confidential © 2019 Arm Limited

Introduction
Scalable Vector Extension: Vector Length Agnostic Programming

Problems:
• Different partners have different vectorization needs
• ISA namespace is limited

• Ever growing SIMD extensions are not practical

• It’s costly to vectorize your code for every available SIMD extension
• Traditional SIMD instruction sets are media-processing focused
Solution:
• Scalable Vector Extensions: a partner can license the vector length that best

suites their needs
• 128 – 2048 bits (in 128-bit increments)

• Vector Length Agnostic (VLA) programming
• The same vector code will run regardless of vector size

• HPC focus (also server workloads in general, e.g.: ML)

10 Confidential © 2019 Arm Limited

Basic SVE architecture

11 Confidential © 2019 Arm Limited

Basic SVE architecture
• Data types

• Integer
– 8-bit, 16-bit, 32-bit, 64-bit

• Floating point
– half-precision*, single precision, double precision

• Memory operations
• Contiguous load/store
• Structure load/store (AoS to SoA and back)
• Non-contiguous load/store

– Stride, Gather and Scatter
• Non-temporal accesses

– Improved stream operations
• Speculative accesses
• Load & Replicate
• ...

12 Confidential © 2019 Arm Limited

Basic SVE architecture
• Arithmetic and logic operations

• All your classics
• Reductions
• Some exotic instructions, e.g.: population count.

• Predicate-specific instructions
• Generation
• Manipulation
• Partition
• …

• Permute operations
• Extract elements
• Compact
• Permute
• …

13 Confidential © 2019 Arm Limited

Vector Length Agnostic Vectorization
NEON vectorization

x0 is 'a', x1 is 'b', x2 is 'c', x3 is 'N’, x8 is the loop induction variable 'i’
mov x8, xzr
subs x9, x3, 3 # x9 = N -3
b.ls .loop_tail_preheader # jump to loop tail if N <= 3

.vector_body:
ldr q0, [x1, x8, lsl 4] # load 4 elements from 'b+i'
ldr q1, [x2, x8, lsl 4] # load 4 elements from 'c+i'
add v0.4s, v1.4s, v0.4s # add the vector
str q0, [x0, x8, lsl 4] # store 4 elements in 'a+i'
add x8, x8, 4 # increment 'i' by 4
cmp x8, x9 # compare i with N - 3
b.lo .vector_body # keep looping if i < N-3

.loop_tail_preheader:
cmp x8, x3 # compare the loop counter with N
b.hs .function_exit # if greater or equal N, terminate

.loop_tail:
ldr w12, [x1, x8, lsl 2]
ldr w13, [x2, x8, lsl 2]
add w12, w13, w12
str w12, [x0, x8, lsl 2]
cmp x8, x3
b.lo .loop_tail # keep looping until no elements remain

.function_exit:
ret

14 Confidential © 2019 Arm Limited

Vector Length Agnostic Vectorization
SVE vectorization

x0 is 'a', x1 is 'b', x2 is 'c', x3 is 'N', x4 is 'i’
mov x4, 0 # set 'i=0’
b cond # branch to 'cond'

loop_body:
ld1w z0.s, p0/z, [x1, x4, lsl 2]# load vector z0 from address 'b + i’
ld1w z1.s, p0/z, [x2, x4, lsl 2]# same, but from 'c + i' into vector z1
add z0.s, p0/m, z0.s, z1.s # add the vectors
st1w z0.s, p0, [x0, x4, lsl 2] # store vector z0 at 'a + I’
incw x4 # increment 'i' by number of words in a vector

cond:
whilelt p0.s, x4, x3 # build the loop predicate p0, as p0.s[idx] = (x4+idx) < x3

it also sets the condition flags
b.first loop_body # branch to 'loop_body' if the first bit in the predicate

register 'p0' is set
ret

15 Confidential © 2019 Arm Limited

Vector Length Agnostic Vectorization
SVE vectorization

P0

whilelt p0.s, x4, x3

x4<x3
x4+1<x3

x4+2<x3
x4+3<x3

x4+4<x3

01234567891011121315 14

X4+14<x3
x4+15<x3

. . .
. . .

16 Confidential © 2019 Arm Limited

Vector Length Agnostic Vectorization
SVE vectorization

P0

whilelt p0.s, x4, x3 #[x3 = 20]

x4<x3
x4+1<x3

x4+2<x3
x4+3<x3

x4+4<x3

01234567891011121315 14

X4+14<x3
x4+15<x3

. . .
. . .

x4 = 0

17 Confidential © 2019 Arm Limited

Vector Length Agnostic Vectorization
SVE vectorization

T T T T T T T T T T T T T T T TP0

whilelt p0.s, x4, x3 #[x3 = 20]

x4<x3
x4+1<x3

x4+2<x3
x4+3<x3

x4+4<x3

01234567891011121315 14

X4+14<x3
x4+15<x3

. . .
. . .

x4 = 0

18 Confidential © 2019 Arm Limited

Vector Length Agnostic Vectorization
SVE vectorization

x0 is 'a', x1 is 'b', x2 is 'c', x3 is 'N', x4 is 'i’
mov x4, 0 # set 'i=0’
b cond # branch to 'cond'

loop_body:
ld1w z0.s, p0/z, [x1, x4, lsl 2]# load vector z0 from address 'b + i’
ld1w z1.s, p0/z, [x2, x4, lsl 2]# same, but from 'c + i' into vector z1
add z0.s, p0/m, z0.s, z1.s # add the vectors
st1w z0.s, p0, [x0, x4, lsl 2] # store vector z0 at 'a + I’
incw x4 # increment 'i' by number of words in a vector

cond:
whilelt p0.s, x4, x3 # build the loop predicate p0, as p0.s[idx] = (x4+idx) < x3

it also sets the condition flags
b.first loop_body # branch to 'loop_body' if the first bit in the predicate

register 'p0' is set
ret

19 Confidential © 2019 Arm Limited

Vector Length Agnostic Vectorization
SVE vectorization

T T T T T T T T T T T T T T T TP0

whilelt p0.s, x4, x3 #[x3 = 20]

x4<x3
x4+1<x3

x4+2<x3
x4+3<x3

x4+4<x3

01234567891011121315 14

X4+14<x3
x4+15<x3

. . .
. . .

F F F F F F F F F F F F T T T TP0
x4<x3

x4+1<x3
x4+2<x3

x4+3<x3
x4+4<x3

01234567891011121315 14

X4+14<x3
x4+15<x3

. . .
. . .

x4 = 0

x4 = 16

20 Confidential © 2019 Arm Limited

Vector Length Agnostic Vectorization
SVE vectorization

x0 is 'a', x1 is 'b', x2 is 'c', x3 is 'N', x4 is 'i’
mov x4, 0 # set 'i=0’
b cond # branch to 'cond'

loop_body:
ld1w z0.s, p0/z, [x1, x4, lsl 2]# load vector z0 from address 'b + i’
ld1w z1.s, p0/z, [x2, x4, lsl 2]# same, but from 'c + i' into vector z1
add z0.s, p0/m, z0.s, z1.s # add the vectors
st1w z0.s, p0, [x0, x4, lsl 2] # store vector z0 at 'a + I’
incw x4 # increment 'i' by number of words in a vector

cond:
whilelt p0.s, x4, x3 # build the loop predicate p0, as p0.s[idx] = (x4+idx) < x3

it also sets the condition flags
b.first loop_body # branch to 'loop_body' if the first bit in the predicate

register 'p0' is set
ret

21 Confidential © 2019 Arm Limited

Vector Length Agnostic Vectorization
SVE vectorization

T T T T T T T T T T T T T T T TP0

whilelt p0.s, x4, x3 #[x3 = 20]

x4<x3
x4+1<x3

x4+2<x3
x4+3<x3

x4+4<x3

01234567891011121315 14

X4+14<x3
x4+15<x3

. . .
. . .

F F F F F F F F F F F F T T T TP0
x4<x3

x4+1<x3
x4+2<x3

x4+3<x3
x4+4<x3

01234567891011121315 14

X4+14<x3
x4+15<x3

. . .
. . .

F F F F F F F F F F F F F F F FP0
x4<x3

x4+1<x3
x4+2<x3

x4+3<x3
x4+4<x3

01234567891011121315 14

X4+14<x3
x4+15<x3 . . .

x4 = 0

x4 = 16

x4 = 32

. . .

22 Confidential © 2019 Arm Limited

Vector Length Agnostic Vectorization
SVE vectorization

x0 is 'a', x1 is 'b', x2 is 'c', x3 is 'N', x4 is 'i’
mov x4, 0 # set 'i=0’
b cond # branch to 'cond'

loop_body:
ld1w z0.s, p0/z, [x1, x4, lsl 2]# load vector z0 from address 'b + i’
ld1w z1.s, p0/z, [x2, x4, lsl 2]# same, but from 'c + i' into vector z1
add z0.s, p0/m, z0.s, z1.s # add the vectors
st1w z0.s, p0, [x0, x4, lsl 2] # store vector z0 at 'a + I’
incw x4 # increment 'i' by number of words in a vector

cond:
whilelt p0.s, x4, x3 # build the loop predicate p0, as p0.s[idx] = (x4+idx) < x3

it also sets the condition flags
b.first loop_body # branch to 'loop_body' if the first bit in the predicate

register 'p0' is set
ret

23 Confidential © 2019 Arm Limited

SVE Programming
Documentation and tools

• ISA specification: The Scalable Vector Extension for Armv8-A

• Explained examples: A sneak peek into SVE and VLA programming

• Intrinsics
• Documentation: Arm C Language Extensions for SVE

• Examples: Arm Scalable Vector Extensions and application to Machine Learning

• Compilers & auto-vectorization
• GCC (-ftree-vectorize or -O3 for basic block vectorizer)

– -ftree-vectorize-verbose=2 will give information about vectorization success/failure

• Arm Compiler for HPC (at least -O2)
– #pragma directives can be used to give the vectorizer hints

§ #pragma omp parallel for simd

§ #pragma clang loop vectorize(enable) …

• Cray

• Fujitsu

https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/technology-update-the-scalable-vector-extension-sve-for-the-armv8-a-architecture
https://developer.arm.com/solutions/hpc/resources/hpc-white-papers/a-sneak-peek-into-sve-and-vla-programming
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0665619/index.html
https://developer.arm.com/solutions/hpc/resources/hpc-white-papers/arm-scalable-vector-extensions-and-application-to-machine-learning

24 Confidential © 2019 Arm Limited

SVE implementations: Fujitsu’s A64FX
• Architecture features

• Armv8.2-A (AArch64 only)
• SVE 512-bit
• 4 x 12 compute cores + 4 ”assistant” cores
• 4 x 8 GiB HBM2
• Fujitsu’s Tofu interconnect

– 6D Mesh/Torus
– 28 Gbps x 2 lanes x 10 ports

• 16 lanes of PCIe 3.0
• 7nm FinFET

• 8.786 billion transistors
• 594 package signal pins

• Peak Performance
• > 2.7 TFLOPs (> 90% @ DGEMM)
• Memory B/W 1024 GB/s (> 80% @ Stream Triad)

gem5 simulation

26 Confidential © 2019 Arm Limited

Introduction
What is gem5?

• gem5 is a simulation infrastructure
• You can use it to build simulators

• gem5 is a research tool
• Simulators are a cost-effective way to evaluate ideas

• gem5 models various system components
• Different CPUs, interconnects, memory subsystems, …

• gem5 also models the interactions between these components

Arm Research Enablement Kit is a guide through Arm-based system
modeling using the gem5 simulator and a 64-bit processor model based
on Armv8-A.
https://developer.arm.com/research/research-enablement/system-modeling

https://developer.arm.com/research/research-enablement/system-modeling

27 Confidential © 2019 Arm Limited

Introduction
Simulation model

• Three basic components:
• SimObject: the simulated component
• Master Port: outgoing endpoint through which the SimObject issues requests
• Slave Port: incoming endpoint through which the SimObject receives requests

SimObject SimObject

Master Port

Master Port

SimObject

Master PortSlave Port

Slave Port Slave Port

28 Confidential © 2019 Arm Limited

Introduction
Simulation setup

• Gem5 is conceptually a Python library implemented in C++
• Configured by instantiating Python classes with matching C++ classes

– From Python, instantiate SimObject objects and arrange them by interconnecting their ports
• Parameters exposed as attributes in Python
• Running is controlled from Python but implemented in C++

• Two steps: Configuration and execution
• Configuration ends with a call to instantiate the C++ world
• Parameters cannot be changed after the C++ world has been created
• Running as a standard discrete event timing model (logical time measured in ‘ticks’)

29 Confidential © 2019 Arm Limited

Introduction
Simulation flow

Create Python
SimObjects

Instantiate
Objects Run Simulation Run Simulation

Instantiate C++
Objects Simulate in C++ Simulate in C++

Running guest
code

Running guest
code

Ca
llb

ac
k

Ca
llb

ac
k

Ex
it

ev
en

t

Ex
it

ev
en

t

m5.instantiate() m5.simulate() m5.simulate()Python world

C++ world

Guest world

30 Confidential © 2019 Arm Limited

Simulation modes
General system overview

CPU (-like)

Memory
Devices

Bus
Devices

Other
Devices

CPU drives the simulation
by issuing requests

31 Confidential © 2019 Arm Limited

Simulation modes
Timing model
• Timing

• Accurate timing information
• Queueing delay and resource contention
• Requests are processed asynchronously
• Slow

• Atomic
• Very limited timing information
• Request are processed instantaneously
• Useful for fast-forwarding and warp-up
• Fastest

• Functional
• Limited timing information
• Requests are processed instantaneously
• Can co-exist with Timing or Atomic elements
• Used to model I/O and connect debug interfaces

32 Confidential © 2019 Arm Limited

Operating system modes

Question: How do we deal with the operating system?

•System calls

• Libraries

•Process scheduling

• Inter-process communication

•…

33 Confidential © 2019 Arm Limited

Operating system modes

Two options
• Simulated OS
• Emulated OS

34 Confidential © 2019 Arm Limited

Operating system modes
Full-system Simulation

• Full-system
• Boot an operating system
• Models bare hardware, including devices -> simulated inputs (keyboard, VNC) and output (UART, frame

buffer)
• Interrupts, exceptions, fault handlers
• Privileged instructions
• Bigger (and slower) model

35 Confidential © 2019 Arm Limited

Operating system modes
Syscall Emulation

• Syscall Emulation
• Run individual applications or set of applications on MP
• Models user-level ISA plus common system calls
• System calls emulated, typically by calling the host OS
• Simplified address translation model
• No process scheduling
• Binaries have to be statically compiled (no dynamic link support)
• Smaller, more streamlined (faster model) model
• Misses timing for all OS interactions

36 Confidential © 2019 Arm Limited

Using gem5
Prerequisites

Operating system:
• OSX, Linux
• Limited support for Windows 10 with Linux environment

Software dependencies:
• git
• python 2.7 (dev. Packages)
• gcc 4.8 or clang 3.1 (or newer)
• swig 2.0.4 or newer
• zlib
• m4
• make

Optional dependencies:
• dtc (to compile device trees for full system)
• Armv8 cross compiler (to compile workloads)
• protobuf 2.1 or later (trace capture and playback)
• python-pydot (to generate system diagrams)

37 Confidential © 2019 Arm Limited

Using gem5
Downloading

Clone development repository
~$ git clone https://gem5.googlesource.com/public/gem5

Update the cloned repository:
~$ git pull

https://gem5.googlesource.com/public/gem5

38 Confidential © 2019 Arm Limited

Using gem5
Compiling

~$ scons build/ARM/gem5.opt -j4

• Guest architecture

• Several architectures in the source
tree

• Most common ones are:

• ARM
• NULL

• For trace-driven simulation

• X86
• Popular in academia but very

strange timing behavior

• Optimization level:

• debug : Debug symbols, no/few
optimizations

• opt : Debug symbols + most
optimizations

• fast : No symbols + even more
optimizations

39 Confidential © 2019 Arm Limited

Using gem5
Running syscall emulation

~$ build/ARM/gem5.opt configs/example/se.py --num-cpus=4 --caches --l2cache --mem-type=DDR4_2400_16x4
--mem-size=2GB --cpu-type=DerivO3CPU -c <binary> -o “<cmd. line options>”

Runs <binary> on a generic system with an out-of-order CPU and 2GB of DDR4

• DerivO3CPU is a timing model, so it will run in timing mode

• Timing CPUs require at least L1 caches (it will complain otherwise)

• se.py is only a sample configuration, you can write your own configuration scripts

• Don’t look into it to see how to do that, it’s unnecessarily complex

• configs/learning_gem5/part1 is a much better starting point

40 Confidential © 2019 Arm Limited

Using gem5
Statistics
• Output @ m5out (unless otherwise specified)
Sample stats.txt:
---------- Begin Simulation Statistics ----------
final_tick 18397500 # Number of ticks from beginning of simulation
(restored from checkpoints and never reset)
host_inst_rate 9479 # Simulator instruction rate (inst/s)
host_mem_usage 2331956 # Number of bytes of host memory used
host_op_rate 10997 # Simulator op (including micro ops) rate (op/s)
host_seconds 0.53 # Real time elapsed on the host
host_tick_rate 34773999 # Simulator tick rate (ticks/s)
sim_freq 1000000000000 # Frequency of simulated ticks
sim_insts 5014 # Number of instructions simulated
sim_ops 5818 # Number of ops (including micro ops) simulated
sim_seconds 0.000018 # Number of seconds simulated
sim_ticks 18397500 # Number of ticks simulated
…
system.mem_ctrls.bw_read::total 1381057209 # Total read bandwidth from this memory (bytes/s)
system.mem_ctrls.bw_inst_read::.cpu0.inst 960130453 # Instruction read bandwidth from this
memory (bytes/s)

41 Confidential © 2019 Arm Limited

Opportunities and limitations of simulators
Good practices
• Think about what you want to evaluate and make sure

everything that can have a meaningful impact has been
adequately modeled

– E.g.: if you want to have an idea of your B/W consumption,
make sure everything between your CPU and your memory is
properly arranged

– The better your base model, the more you can trust it

• Relative information is more valuable
– E.g.: better than raw B/W numbers, relative improvements

when you make a change are likely to give you more valuable
information

• Testing the limits of your algorithms and/or architectures can
provide valuable information

– E.g.: configure an infinite B/W memory, how much faster can I
run? That’s going to be (roughly) your limit for how much better
you can perform as memory improves

• Use vendor-provided simulators when available
– Riken offers access to their A64FX simulator (NDA)

Pitfalls
• gem5 doesn’t simulate an x86 or Arm processor, gem5

simulates a gem5 processor that runs that ISA
• Avoid direct performance extrapolations

– It can be useful as a reference, but don’t take it as an
absolute prediction

• If you’re going to draw conclusions from a specific
subsystem, make sure that said subsystem is modeled with
enough detail

– E.g.: memory subsystem and interactions with
surrounding devices (this includes the CPU)

• If numbers look too good/odd/bad to be true, they probably
aren’t

– Making sure things make sense is important to draw
accurate conclusions

Thank You
Danke
Merci
��

�����
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش
הדות

Confidential © 2019 Arm Limited

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

44 Confidential © 2019 Arm Limited

Extra SVE examples
• Vectorize with control dependencies

45 Confidential © 2019 Arm Limited

Vectorisation: control dependencies

void example02(int *restrict a, const int *b,
const int *c, long N, const int *d)

{
long i;
for (i = 0; i < N; ++i)
if (d[i] > 0)
a[i] = b[i] + c[i];

}

46 Confidential © 2019 Arm Limited

Vectorisation: control dependencies
x0 is 'a', x1 is 'b', x2 is 'c', x3 is 'N', x4 is 'd', x5 is 'i’
mov x5, 0 # set 'i = 0’
b cond

loop_body:
ld1w z4.s, p0/z, [x4, x5, lsl 2] # load a vector from 'd + i’
cmpgt p1.s, p0/z, z4.s, 0 # compare greater than zero

p1.s[idx] = z4.s[idx] > 0
from now on all the instructions depending on the 'if' statement are
predicated with 'p1’
ld1w z0.s, p1/z, [x1, x5, lsl 2]
ld1w z1.s, p1/z, [x2, x5, lsl 2]
add z0.s, p1/m, z0.s, z1.s
st1w z0.s, p1, [x0, x5, lsl 2]
incw x5

cond:
whilelt p0.s, x5, x3
b.first loop_body
ret

47 Confidential © 2019 Arm Limited

Extra SVE examples
• Vectorize reduction & conditional reduction with zeroing and merging

48 Confidential © 2019 Arm Limited

Vectorisation: reduction

int example02(int *a, int *b, long N)
{
long i;
int s = 0;
for (i = 0; i < N; ++i)
s += a[i];

return s;
}

49 Confidential © 2019 Arm Limited

Conditional vector reduction

int example02(int *a, int *b, long N)
{
long i;
int s = 0;
for (i = 0; i < N; ++i)
if (b[i])
s += a[i];

return s;
}

50 Confidential © 2019 Arm Limited

Conditional vector reduction: zeroing & merging
mov x5, 0 # set 'i = 0’
mov z0.s, 0 # set the accumulator 's' to zero
b cond

loop_body:
ld1w z4.s, p0/z, [x1, x5, lsl 2] # load a vector

at 'b + i'
cmpne p1.s, p0/z, z4.s, 0 # compare non zero

into predicate 'p1'
from now on all the instructions depending on the 'if' statement are
predicated with 'p1'
ld1w z1.s, p1/z, [x0, x5, lsl 2]
add z0.s, p1/m, z0.s, z1.s # the inactive lanes

retain the partial sums
of the previous iterations

incw x5
cond:
whilelt p0.s, x5, x3
b.first loop_body
ptrue p0.s
saddv d0, p0, z0.s # signed add words across the lanes of z0, and place the

scalar result in d0
mov w0, v0.s[0]
ret

51 Confidential © 2019 Arm Limited

Extra SVE examples
• Vectorize reduction

52 Confidential © 2019 Arm Limited

Non-contiguous memory access

void example03(int *restrict a, const int *b,
const int *c, long N, const int *d)

{
long i;
for (i = 0; i < N; ++i)

a[i] = b[d[i]] + c[i];
}

53 Confidential © 2019 Arm Limited

Non-contiguous memory access: gather & scatter

x0 is 'a', x1 is 'b', x2 is 'c', x3 is 'N', x4 is 'd', x5 is 'i’
mov x5, 0
b cond

loop:
ld1w z1.s, p0/z, [x4, x5, lsl 2]
ld1w z0.s, p0/z, [x1, z1.s, sxtw 2] # load a vector

from 'x1 + sxtw(z1.s) << 2'
ld1w z1.s, p0/z, [x2, x5, lsl 2]
add z0.s, p0/m, z0.s, z1.s
st1w z0.s, p0, [x0, x5, lsl 2]
incw x5

cond:
whilelt p0.s, x5, x3
b.first loop
ret

54 Confidential © 2019 Arm Limited

Extra SVE examples
• Vectorize string operations with speculative memory accesses

55 Confidential © 2019 Arm Limited

NULL-terminated string operations?

void strcpy(char *restrict dst, const char *src)
{
while (1) {
*dst = *src;
if (*src == '\0') break;
src++; dst++;

}
}

56 Confidential © 2019 Arm Limited

NULL-terminated string operations?

‘\0’ ‘d’ ‘l ’ ‘r’ ‘o’ ‘w’ ‘ ’ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’

const char* src = “Hello, world”;

57 Confidential © 2019 Arm Limited

NULL-terminated string operations?

‘\0’ ‘d’ ‘l ’ ‘r’ ‘o’ ‘w’ ‘ ’ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’

Zd

const char* src = “Hello, world”;

MSB LSB

58 Confidential © 2019 Arm Limited

NULL-terminated string operations?

‘\0’ ‘d’ ‘l ’ ‘r’ ‘o’ ‘w’ ‘ ’ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’

Zd

const char* src = “Hello, world”;

MSB LSB

ld1b?

59 Confidential © 2019 Arm Limited

NULL-terminated string operations?

‘\0’ ‘d’ ‘l ’ ‘r’ ‘o’ ‘w’ ‘ ’ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’Zd

const char* src = “Hello, world”;

MSB LSB

ld1b

60 Confidential © 2019 Arm Limited

NULL-terminated string operations?

• Segmentation fault

‘\0’ ‘d’ ‘l ’ ‘r’ ‘o’ ‘w’ ‘ ’ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’Zd

const char* src = “Hello, world”;

MSB LSB

ld1b

61 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

• First Fault Register (FFR)
• Like predicate registers: 1 bit per byte in a vector register
• Special instruction to load the whole vector speculatively: ldff1
• Keep track of which accesses fault
• If all accesses fault, it’s a real fault and throws an exception

62 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

‘\0’ ‘d’ ‘l ’ ‘r’ ‘o’ ‘w’ ‘ ’ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’

Zd

const char* src = “Hello, world”;

MSB LSB

FFR

ldff1b

63 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

‘\0’ ‘d’ ‘l ’ ‘r’ ‘o’ ‘w’ ‘ ’ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’Zd

const char* src = “Hello, world”;

MSB LSB

1 1 1 1 1 1 1 1 1 1 1 1 1FFR

ldff1b

64 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

‘\0’ ‘d’ ‘l ’ ‘r’ ‘o’ ‘w’ ‘ ’ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’Zd

const char* src = “Hello, world”;

MSB LSB

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1FFR

ldff1b

65 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

void strcpy(char *restrict dst, const char *src)
{
while (1) {
*dst = *src;
if (*src == '\0') break;
src++; dst++;

}
}

66 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

sve_strcpy:
mov x2, 0
ptrue p2.b

loop:
setffr
ldff1b z0.b, p2/z, [x1, x2]
rdffr p0.b, p2/z
cmpeq p1.b, p0/z, z0.b, 0
brka p0.b, p0/z, p1.b
st1b z0.b, p0, [x0, x2]
incp x2, p0.b
b.none loop
ret

67 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

sve_strcpy:
mov x2, 0
ptrue p2.b

loop:
setffr
ldff1b z0.b, p2/z, [x1, x2]
rdffr p0.b, p2/z
cmpeq p1.b, p0/z, z0.b, 0
brka p0.b, p0/z, p1.b
st1b z0.b, p0, [x0, x2]
incp x2, p0.b
b.none loop
ret

Set all bits in FFR to 1

68 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

sve_strcpy:
mov x2, 0
ptrue p2.b

loop:
setffr
ldff1b z0.b, p2/z, [x1, x2]
rdffr p0.b, p2/z
cmpeq p1.b, p0/z, z0.b, 0
brka p0.b, p0/z, p1.b
st1b z0.b, p0, [x0, x2]
incp x2, p0.b
b.none loop
ret

Speculative load (fill FFR)

69 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

sve_strcpy:
mov x2, 0
ptrue p2.b

loop:
setffr
ldff1b z0.b, p2/z, [x1, x2]
rdffr p0.b, p2/z
cmpeq p1.b, p0/z, z0.b, 0
brka p0.b, p0/z, p1.b
st1b z0.b, p0, [x0, x2]
incp x2, p0.b
b.none loop
ret

Read FFR into a predicate register

70 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

sve_strcpy:
mov x2, 0
ptrue p2.b

loop:
setffr
ldff1b z0.b, p2/z, [x1, x2]
rdffr p0.b, p2/z
cmpeq p1.b, p0/z, z0.b, 0
brka p0.b, p0/z, p1.b
st1b z0.b, p0, [x0, x2]
incp x2, p0.b
b.none loop
ret

71 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z0

72 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z0

cmpeq p1.b, p0/z, z0.b, 0

p1

73 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z0

cmpeq p1.b, p0/z, z0.b, 0

z z z 1 0 0 0 0 0 0 0 0 0 0 0 0p1

74 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

sve_strcpy:
mov x2, 0
ptrue p2.b

loop:
setffr
ldff1b z0.b, p2/z, [x1, x2]
rdffr p0.b, p2/z
cmpeq p1.b, p0/z, z0.b, 0
brka p0.b, p0/z, p1.b
st1b z0.b, p0, [x0, x2]
incp x2, p0.b
b.none loop
ret

Read FFR into a predicate register

75 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z0

cmpeq p1.b, p0/z, z0.b, 0

z z z 1 0 0 0 0 0 0 0 0 0 0 0 0p1

brka p0.b, p0/z, p1.b

p0

76 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z0

cmpeq p1.b, p0/z, z0.b, 0

z z z 1 0 0 0 0 0 0 0 0 0 0 0 0p1

brka p0.b, p0/z, p1.b

1 1 1 1 1 1 1 1 1 1 1 1p0

77 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z0

cmpeq p1.b, p0/z, z0.b, 0

z z z 1 0 0 0 0 0 0 0 0 0 0 0 0p1

brka p0.b, p0/z, p1.b

1 1 1 1 1 1 1 1 1 1 1 1 1p0

78 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z0

cmpeq p1.b, p0/z, z0.b, 0

z z z 1 0 0 0 0 0 0 0 0 0 0 0 0p1

brka p0.b, p0/z, p1.b

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1p0

79 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

sve_strcpy:
mov x2, 0
ptrue p2.b

loop:
setffr
ldff1b z0.b, p2/z, [x1, x2]
rdffr p0.b, p2/z
cmpeq p1.b, p0/z, z0.b, 0
brka p0.b, p0/z, p1.b
st1b z0.b, p0, [x0, x2]
incp x2, p0.b
b.none loop
ret

Store up to the first ‘\0’ (inclusive)

80 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

sve_strcpy:
mov x2, 0
ptrue p2.b

loop:
setffr
ldff1b z0.b, p2/z, [x1, x2]
rdffr p0.b, p2/z
cmpeq p1.b, p0/z, z0.b, 0
brka p0.b, p0/z, p1.b
st1b z0.b, p0, [x0, x2]
incp x2, p0.b
b.none loop
ret

Increase x2 by the number of 1s in
p0 (up to the ‘\0’)
• Notice: by the end of the copy, x2 will be equal

to the string length

81 Confidential © 2019 Arm Limited

Dealing with unknown loop bounds: Speculative Load

sve_strcpy:
mov x2, 0
ptrue p2.b

loop:
setffr
ldff1b z0.b, p2/z, [x1, x2]
rdffr p0.b, p2/z
cmpeq p1.b, p0/z, z0.b, 0
brka p0.b, p0/z, p1.b
st1b z0.b, p0, [x0, x2]
incp x2, p0.b
b.none loop
ret

cmpeq set the flags; if no ‘\0’ was
found, keep copying

82 Confidential © 2019 Arm Limited

String comparison

int strcmp(const char *lhs, const char *rhs)
{
while (*lhs == *rhs && *lhs != '\0')
lhs++, rhs++;

return (*lhs - *rhs);
}

83 Confidential © 2019 Arm Limited

String comparison
sve_strcmp:
mov x2, 0
ptrue p0.b

loop:
setffr
ldff1b z0.b, p0/z, [x0, x2]
ldff1b z1.b, p0/z, [x1, x2]
rdffr p1.b, p0/z
incp x2, p1.b
cmpeq p2.b, p1/z, z0.b, z1.b
cmpne p3.b, p1/z, z0.b, 0
nands p2.b, p1/z, p2.b, p3.b
b.none loop

terminate:
brkb p2.b, p1/z, p2.b
sub z0.b, p1/m, z0.b, z1.b
lasta w0, p2, z0.b
sxtb w0, w0
ret

84 Confidential © 2019 Arm Limited

String comparison

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z0
‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z1

85 Confidential © 2019 Arm Limited

String comparison
sve_strcmp:
mov x2, 0
ptrue p0.b

loop:
setffr
ldff1b z0.b, p0/z, [x0, x2]
ldff1b z1.b, p0/z, [x1, x2]
rdffr p1.b, p0/z
incp x2, p1.b
cmpeq p2.b, p1/z, z0.b, z1.b
cmpne p3.b, p1/z, z0.b, 0
nands p2.b, p1/z, p2.b, p3.b
b.none loop

terminate:
brkb p2.b, p1/z, p2.b
sub z0.b, p1/m, z0.b, z1.b
lasta w0, p2, z0.b
sxtb w0, w0
ret

86 Confidential © 2019 Arm Limited

String comparison
sve_strcmp:
mov x2, 0
ptrue p0.b

loop:
setffr
ldff1b z0.b, p0/z, [x0, x2]
ldff1b z1.b, p0/z, [x1, x2]
rdffr p1.b, p0/z
incp x2, p1.b
cmpeq p2.b, p1/z, z0.b, z1.b
cmpne p3.b, p1/z, z0.b, 0
nands p2.b, p1/z, p2.b, p3.b
b.none loop

terminate:
brkb p2.b, p1/z, p2.b
sub z0.b, p1/m, z0.b, z1.b
lasta w0, p2, z0.b
sxtb w0, w0
ret

87 Confidential © 2019 Arm Limited

String comparison

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z0
‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z1

z z z 1 1 1 1 1 1 1 1 1 1 1 1 1p2

z z z 0 1 1 1 1 1 1 1 1 1 1 1 1p3

z0==z1

z0!=0

88 Confidential © 2019 Arm Limited

String comparison
sve_strcmp:
mov x2, 0
ptrue p0.b

loop:
setffr
ldff1b z0.b, p0/z, [x0, x2]
ldff1b z1.b, p0/z, [x1, x2]
rdffr p1.b, p0/z
incp x2, p1.b
cmpeq p2.b, p1/z, z0.b, z1.b
cmpne p3.b, p1/z, z0.b, 0
nands p2.b, p1/z, p2.b, p3.b
b.none loop

terminate:
brkb p2.b, p1/z, p2.b
sub z0.b, p1/m, z0.b, z1.b
lasta w0, p2, z0.b
sxtb w0, w0
ret

89 Confidential © 2019 Arm Limited

String comparison

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z0
‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z1

z z z 1 1 1 1 1 1 1 1 1 1 1 1 1p2

z z z 0 1 1 1 1 1 1 1 1 1 1 1 1p3

z0==z1

z0!=0

nands p2.b, p1/z, p2.b, p3.b

z z z 1 0 0 0 0 0 0 0 0 0 0 0 0p2

90 Confidential © 2019 Arm Limited

String comparison
sve_strcmp:
mov x2, 0
ptrue p0.b

loop:
setffr
ldff1b z0.b, p0/z, [x0, x2]
ldff1b z1.b, p0/z, [x1, x2]
rdffr p1.b, p0/z
incp x2, p1.b
cmpeq p2.b, p1/z, z0.b, z1.b
cmpne p3.b, p1/z, z0.b, 0
nands p2.b, p1/z, p2.b, p3.b
b.none loop

terminate:
brkb p2.b, p1/z, p2.b
sub z0.b, p1/m, z0.b, z1.b
lasta w0, p2, z0.b
sxtb w0, w0
ret

91 Confidential © 2019 Arm Limited

String comparison
sve_strcmp:
mov x2, 0
ptrue p0.b

loop:
setffr
ldff1b z0.b, p0/z, [x0, x2]
ldff1b z1.b, p0/z, [x1, x2]
rdffr p1.b, p0/z
incp x2, p1.b
cmpeq p2.b, p1/z, z0.b, z1.b
cmpne p3.b, p1/z, z0.b, 0
nands p2.b, p1/z, p2.b, p3.b
b.none loop

terminate:
brkb p2.b, p1/z, p2.b
sub z0.b, p1/m, z0.b, z1.b
lasta w0, p2, z0.b
sxtb w0, w0
ret

92 Confidential © 2019 Arm Limited

String comparison

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z0
‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z1

z z z 1 1 1 1 1 1 1 1 1 1 1 1 1p2

z z z 0 1 1 1 1 1 1 1 1 1 1 1 1p3

z0==z1

z0!=0
nands p2.b, p1/z, p2.b, p3.b

z z z 1 0 0 0 0 0 0 0 0 0 0 0 0p2

brkb p2.b, p1/z, p2.b

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1p2

93 Confidential © 2019 Arm Limited

String comparison
sve_strcmp:
mov x2, 0
ptrue p0.b

loop:
setffr
ldff1b z0.b, p0/z, [x0, x2]
ldff1b z1.b, p0/z, [x1, x2]
rdffr p1.b, p0/z
incp x2, p1.b
cmpeq p2.b, p1/z, z0.b, z1.b
cmpne p3.b, p1/z, z0.b, 0
nands p2.b, p1/z, p2.b, p3.b
b.none loop

terminate:
brkb p2.b, p1/z, p2.b
sub z0.b, p1/m, z0.b, z1.b
lasta w0, p2, z0.b
sxtb w0, w0
ret

94 Confidential © 2019 Arm Limited

String comparison

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z0
‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z1

sub z0.b, p1/m, z0.b, z1.b

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1p2

95 Confidential © 2019 Arm Limited

String comparison

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z0
‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z1

sub z0.b, p1/m, z0.b, z1.b

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1p2

0 0 0 0 0 0 0 0 0 0 0 0 0z0

96 Confidential © 2019 Arm Limited

String comparison
sve_strcmp:
mov x2, 0
ptrue p0.b

loop:
setffr
ldff1b z0.b, p0/z, [x0, x2]
ldff1b z1.b, p0/z, [x1, x2]
rdffr p1.b, p0/z
incp x2, p1.b
cmpeq p2.b, p1/z, z0.b, z1.b
cmpne p3.b, p1/z, z0.b, 0
nands p2.b, p1/z, p2.b, p3.b
b.none loop

terminate:
brkb p2.b, p1/z, p2.b
sub z0.b, p1/m, z0.b, z1.b
lasta w0, p2, z0.b
sxtb w0, w0
ret

97 Confidential © 2019 Arm Limited

String comparison

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z0
‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z1

sub z0.b, p1/m, z0.b, z1.b

lasta w0, p2, z0.b

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1p2

0 0 0 0 0 0 0 0 0 0 0 0 0z0

98 Confidential © 2019 Arm Limited

String comparison

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z0
‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z1

sub z0.b, p1/m, z0.b, z1.b

lasta w0, p2, z0.b

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1p2

0 0 0 0 0 0 0 0 0 0 0 0 0z0

© ARM 2017 70

Title 40pt Title Case

Bullets 24pt sentence case

bullets 20pt sentence case

Research - Software & Large Scale Systems

String comparison

‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z0
‘\0’ ‘d’ ‘l’ ‘r’ ‘o’ ‘w’ ‘ ‘ ‘,’ ‘o’ ‘l’ ‘l’ ‘e’ ‘H’z1

sub z0.b, p1/m, z0.b, z1.b

lasta w0, p2, z0.b

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1p2

0 0 0 0 0 0 0 0 0 0 0 0 0z0

99 Confidential © 2019 Arm Limited

String comparison
sve_strcmp:
mov x2, 0
ptrue p0.b

loop:
setffr
ldff1b z0.b, p0/z, [x0, x2]
ldff1b z1.b, p0/z, [x1, x2]
rdffr p1.b, p0/z
incp x2, p1.b
cmpeq p2.b, p1/z, z0.b, z1.b
cmpne p3.b, p1/z, z0.b, 0
nands p2.b, p1/z, p2.b, p3.b
b.none loop

terminate:
brkb p2.b, p1/z, p2.b
sub z0.b, p1/m, z0.b, z1.b
lasta w0, p2, z0.b
sxtb w0, w0
ret

